
DHT or Flooding: A Comparative Study of Name 

Resolution Approaches in Information Centric 

Networks 

Dan Zhang 

WINLAB, Rutgers University 

671 US-1 South, North Brunswick, NJ 08902 

Email: zhangdan@gmail.com 

Hang Liu 

InterDigital Communications, LLC 

781 Third Ave, King of Prussia, PA 19406 

Email: hang.liu@interdigital.com

 
Abstract—Name resolution techniques in Information Centric 

Networks (ICNs) have split into two themes. In one theme as 

adopted by the Content Centric Network (CCN) architecture, 

content availability is advertised to all content routers in a 

network via a flooding protocol in support of name-based 

routing. In the other theme featuring the deployment of 

distributed name resolution servers, content location information 

is inserted to one or more servers, and subsequent requests must 

be resolved thereby. While remarkable research has taken place 

in both directions, there still lacks a quantitative model to 

characterize the bandwidth overhead associated with the two 

name resolution approaches. From a networking practitioner's 

point of view, the bandwidth overhead can be decomposed into 

two parts, one for data delivery and the other for content name 

resolution. Minimizing the latter entails proper content object 

naming and name aggregation, as done with IP addresses. This 

paper proposes models for quantifying the overhead associated 

with name resolution, without and with name aggregation. Based 

on these models, this paper also makes baseline comparisons of 

the two major name resolution approaches in ICNs in terms of 

their bandwidth overhead. Our comparison reveals essential 

design tradeoffs and principal design guidelines.  

Keywords-information centric network, DHT, flooding, name 

resolution 

I.  INTRODUCTION  

Future Internet has been envisioned as built around content 
[1][2][3], instead of host-to-host connections that characterize 
today's Internet. This new paradigm of networking is motivated 
by observing that the dominant traffic of Internet is no longer 
host-to-host communications, but content requests and 
deliveries for which the primary interest to the end users is the 
content objects themselves. Users usually have least interest in 
where these content objects are hosted and how they are 
handled in the network, as long as they get exactly what they 
need in a prompt and robust manner. Host oriented networking 
architecture has limited potential to meet this drastically 
increasing expectation. A number of clean-slate information-
centric network (ICN) architectures [1]-[8] have thus been 
proposed. While these proposals are diverse in nature, 
reflecting different utility perceptions of the future Internet by 
researchers, the core philosophies are essentially the same -- an 
Internet that serves content in the most versatile and efficient 
way. Two streams of ICN architecture studies have been 
dominant in current literature. The flooding based architecture, 

represented by Content Centric Network (CCN) [1], assigns 
content objects with distinct hierarchical names that are 
mapped from human-readable names by some coding rules. 
The hierarchical names enable flexible user-content interaction. 
Reuse of OSPF-like routing algorithm (hence a smooth 
upgrading) and transparent name aggregation are also made 
possible, much in the same way of longest prefix match for IP 
addresses. When flooding is used, a content router (CR) 
advertises the names of content objects which it can serve from 
its repository to other CRs as an IP router advertises its link 
states. Any other CRs can then forward the request for a 
content object to the best content source(s) based on the 
requested content name. Strictly speaking, a repository may or 
may not be a standalone detached from the CR and it may even 
be possible to be co-located with the CR. For the purpose of 
our paper, we do not make this distinction and assume each CR 
has its own repository which is nothing more than a massive 
storage device. We also assume that the CR takes sole 
responsibility handling the content objects in its repository 
including, among other things, generating new content objects 
and removing outdated content objects. Although flooding 
based routing has been successful for IP networks, flooding 
faithfully the names of all the content objects can be 
impractical given the sheer quantity that can easily exceed the 
number of IP addresses by several magnitudes. Furthermore, 
the content objects may be dynamically generated and deleted 
in a network due to caching and cache replacement.  

An equally competitive architecture, motivated by research 

in P2P networks [4][5][6][7], is thus designed to avoid the 

unbearable flooding traffic, using the so-called Distributed 

Hash Tables (DHT). DHT provides a distributed lookup 

service. It uses a hash function to associate an identifier, also 

called a key, to a content object and maps the identifier onto a 

node based on the node identifier. Content location resolution 

can be implemented with DHT by storing the content name-

location binding information at the node to which the 

identifier maps. The node is also referred to as the resolver. 

One way to generate the content mapping identifier for a 

content object is to hash the hierarchical name or other types 

of names of the content object. The content identifier is then 

mapped to the resolver whose identifier is the closest to and 

not exceeding the content identifier in the hash space. A CR 

informs the mapped resolver for a content object it will serve 

through insertion/publishing process. Any participating CR 



can identify the resolver for a requested content object using 

its hashed content identifier. It can retrieve the content 

location information (an IP address or a more general directive 

for forwarding) from the resolver, and then the content object 

itself from the source. The hashing process makes the 

identifiers uniformly mapped to the set of resolvers.  
It is possible to map and store the content location 

information to multiple DHT resolvers for better fault 
tolerance. Our discussion in this paper is based on the one-to-
one mapping, which is simpler yet captures the central idea. 
Extension to one-to-many mapping is straightforward based on 
our discussion here. As DHT does not require flooding in 
content publishing process and a CR only need communicate to 
the necessary resolvers about the names of the content objects 
it provides, there seems to be a dramatic decrease in bandwidth 
overhead compared with flooding. However, DHT requires 
additional actions to complete name resolution during the 
content retrieval process – whenever an end user wants a 
content object, it has to send a name resolution query to the 
corresponding resolver, before a content request can be sent to 
the target CR. If we compare flooding and DHT based 
resolution techniques, we immediately see a major design 
tradeoff. Flooding of content availability information in a 
network potentially wastes bandwidth but saves the need of 
name resolution query. Note that we consider flooding is a 
name resolution scheme that lets all other CRs know the 
content location information. It therefore remains unclear 
which is better under what condition, causing a lasting debate 
between the two schools of thoughts.  

A possible remedy that lowers the wasteful flooding traffic 
is inspired by IP aggregation. If a set of content names can be 
justifiably aggregated before being advertised throughout the 
network, a substantial saving in bandwidth may be achieved. 
Fortunately, the hierarchical name structure enables natural 
aggregation opportunity by using prefix aggregation, a 
technique that has become fundamental for today’s longest 
prefix routing in Internet. One exception is necessary. Due to 
transient nature and large quantity of networked content 
objects, pure prefix aggregation that guarantees faultless name 
resolution is not sufficient. In fact, a certain amount of 
resolution error is tolerable in exchange for scalability in name 
resolution overhead. The Bloom filter [11] [12] is one of such 
lossy aggregation techniques that effectively generates the 
summarization of a set of names, with controllable error 
probability. Even with DHT based name resolution, the Bloom 
filter technique may still prove valuable. The question that is 
common to both resolution mechanisms is, given a set of 
names, should we aggregate them or not. If the answer is yes, 
what would be the best aggregation scheme in terms of the 
Bloom filter and error probability design. This paper also 
addresses these issues in the context of both flooding and DHT 
resolutions. 

This paper, to authors' knowledge, is the first work that 
attempts to perform a comparative study of name resolution 
and routing approaches in ICN networks and tries to answer a 
few questions quantitatively: (1) what are the design tradeoffs 
between flooding and DHT-based name resolution schemes 
under different network scenarios, and (2) what are the impacts 
of name aggregation to these name resolution schemes. For 

completeness, we would like to point out that some quantitative 
models have been proposed for the throughput of flooding 
based ICNs, such as CCN [9][10]. But these previous works 
focused on the cost of data delivery, but our work focuses on 
name resolution, i.e. control overhead of these networks. 

II. NETWORK MODELS 

In this section we describe the respective network models  
to implement flooding and DHT name resolution mechanisms. 
The discussion is necessarily simplistic, capturing only the 
essential properties that are relevant to the problems addressed 
in this paper. The flooding network model is similar to IP 
networks, consisting of so called content routers (CRs). These 
routers not only execute the routing protocol but also take a 
number of functionalities not found in IP routers. In particular, 
these CRs are responsible for managing the content objects in 
the attached network and advertising them. DHT network has 
routers as well as a special type of elements called resolvers,. 
Routers are still responsible of managing the content objects 
generated in its attached networks, but only inform the 
corresponding resolvers about the existence of the content 
objects. Note that the resolver function can be distributively co-
located within CRs, i.e. a CR is also one of the resolvers in the 
DHT network. For generality and ease of explanation, we 
separate these two functions. Specifically, a router informs a 
particular resolver about the availability of a content object if 
and only if the content identifier is mapped to the resolver in 
the hash space. When a router wants to retrieve a content 
object, it queries the corresponding resolver for the content's 
location (e.g., the address of the router that manages this piece 
of content) and forwards the request to the target router. We are 
mainly concerned with the name resolution overhead in this 
paper, i.e., we do not quantify the bandwidth overhead incurred 
in forwarding the request to the content holder and retrieving 
the content back, partially because the mechanisms for these 
purposes are applicable to both flooding based and DHT based 
networks, therefore they are not sufficient to distinguish the 
capabilities of the two name resolution schemes or their apt use 
cases. Rather, we derive mathematical models for the overhead 
associated with flooding advertisement as well as name 
insertion and name resolution request – basic operations that 
have been commonly agreed upon that characterize the 
underlying network architecture. Our analysis shows how the 
overhead scales with the size of the network or the number of 
content objects. It also offers a few insights into important 
design considerations, including content naming, partial 
aggregation and resolution error rate optimization.   

We consider an ICN network with stable network topology 
i.e. the CRs are fixed and stable, while the locations of content 
objects change due to dynamic content generation and cache 
replacements. The nodes that participate in the DHT are stable, 
and the overhead for maintaining the DHT structure is very 
small compared to the traffic for content location publishing 
and query. Note that this is different from a P2P network where 
peer churns are frequent.  

Specifically, our network is modeled as a directed graph 
G N E  with N . Content objects are created on a CR, 
kept for some time, and then removed. In a steady state, we 
assume the total number of content objects is . Thus we can 



always label the contents in the network by for the 
purpose of explaining our modeling. Note that the content label 
and content name is different.  A label  always refers to a 
content object on a particular router, for example, c1 represents 
a content object on CR1. However the underlying content 
object (and its name) labeled by , can be changed. In the 
steady state, we can nevertheless make the assumption that the 
request rate for content  is  and that the new content object 
under the label  is generated at a rate of . By this 
assumption, we are essentially saying that when the network 
has entered the steady state, not only the number of content 
objects is roughly constant, so are their popularity and 
generation rates. For content generation, it is understood that 
when a new content is generated under the label of , the 
content previously labeled  is removed from the network. 
Therefore, we may assume the generation rate is equal to the 
replacement rate. This assumption is critical for this paper. 
Therefore, the authors would like to give further intuitive 
justification as how specific content objects are identified with 
their appropriate labels: The content objects on a particular 
router can be partitioned into groups  such that group  

contains only content objects that have roughly the same 
popularity (request rate)  and life span . When the Internet 

has entered the steady state and given the number of content 
objects managed by a router is usually huge, we expect the 
group sizes remain constant. Although the actual content object 
represented by  is time variant, at any time, each content 

object in  can be assigned a specific label  with  

and . This construction also shows that the definition 
of generation rate  only makes sense from the ensemble 
view. 

Let’s consider both name resolution schemes, flooding and 
DHT, not preclude variable length names. We will analyze 
both fixed-length naming and variable-length naming schemes. 
The resolution overhead studied in this paper, without or with 
aggregation, is measured in terms of bandwidth-hop product, 
scaled by name resolution error rate. Specifically, give a 
content object whose name has the effective length of  bits, 
this name needs to be resolved first at the resolver with the 
DHT mechanism, which might be  hops away from the node 
that initiates the request. The bandwidth-hop product is thus 
defined as . The effective length of a content object name is 
the cost to transmit a control packet carried the name. It is the 
actual name size plus certain packetization and transmission 
overhead. The bandwidth-hop product provides a coarse 
measure of the bandwidth overhead of the network for name 
resolution. Similarly, when new content objects are generated, 
there is an overhead for inserting the names of these content 
objects into the resolvers. We call it insertion overhead or 
insertion cost. We recognize that there is additional overhead 
when the resolver returns the resolved address. Also, when new 
names are inserted into the resolver, extra information is 
probably sent along to the resolver. However, we ignore this 
overhead since they are associated with addresses or 
information other than content names. How much of this 
information (e.g., how many bits per address) will be needed 
remains an open problem and may vary from one design to 
another. Consequently, we restrict ourselves to consider only 
content name incurred overhead. It should be straightforward to 

incorporate the extra information in the calculation by 
following the line presented in this paper. 

III. BANDWIDTH OVERHEAD OF DHT 

Suppose  has an effective name length of  bits. Define 

  (1) 

and let  be the number of hops from  to the resolver of . 

The overhead associated with name resolution request in a unit 
time (call it resolution cost rate) is 

  (2) 

For ease of explanation, we assume the request and replay 
incurs the same bandwidth cost.   can be further written as 

  (3) 

where we have defined  as the rate at which  requests for  

  (4) 

and  the average total hops incurred by all possible 
resolutions for  from all the nodes 

  (5) 

Similarly we can define the insertion cost rate as 

  (6) 

where 

  (7) 

Define  as the rate at which  inserts  

  (8) 

and  as the average total hops due to inserting  

  (9) 

then we may write 

  (10) 

The total resolution cost rate is thus given as 

  (11) 

(11) is the general formula to calculate the total cost rate 
with DHT, no matter fixed length naming or variable length 



naming is used. In the following, we consider both scenarios in 
more details. 

A. DHT Resolution Cost Rate with Fixed Name Length 

We look at the special scenario where  
According to (11), the total cost rate with fixed length naming 
is 

  (12) 

We impose the natural constraint that these names must be 
distinct for the  contents that exist in the network so that 
faultless name resolution is possible. Clearly at least we need 

 bits for each name, in which case the cost is minimized 
as 

  (13) 

B. DHT Resolution Cost Rate with Variable Name Lengths 

Relaxing the fixed length naming assumption, we may still 
require faultless name resolution. We can at the same time seek 
to minimize the total cost rate using variable-length names. 
This problem can be formulated as 

  (14) 

(14) can be solved by the entropy coding theory [13]. 
Specifically, define vector 

  (15) 

which constitutes the probability mass function (PMF) over the 
 content objects. Let  be the th component of  and  

be the entropy of the PMF represented by , then 

  (16) 

solves (14). For the purpose of this paper, the optimal  can 
be approximated by 

  (17) 

The approximation of  will be repeatedly and implicitly 
employed in what follows. Consequently 

  (18) 

IV. BANDWIDTH OVERHEAD OF FLOODING 

The flooding mechanism is generally implemented in CCN-
type network architectures in which content names usually 
have a hierarchical structure consisting of subnames like a 
encoded URL. Suppose each name consists of subnames 

. The subname  is considered as an element 

from a space  of  values. Thus we may consider each 

name comes from the space . As a result, all the 
names form a tree with each node in the -th tier of the tree 
represents a specific value from . The uniqueness of a name 
is guaranteed by identifying a unique path from the root node 
to a leaf node as the name. As flooding is commonly referred to 
as advertisement, we also call the bandwidth overhead with 
flooding the advertising cost. 

Suppose 's subnames have length , then the 
advertising cost can be written as 

  (19) 

where  is the total number of links in the network. (19) is true 
because each name must be flooded over the entire network, 
i.e., over  links. 

A. Advertising Cost with Fixed Length Subnames 

If we use fixed length subnames, the maximum number of 
bits we need is  for , in which case the advertising 
cost is minimized as 

  (20) 

Note it is necessarily true that 

  (21) 

B. Advertising Cost with Variable-Length Names 

If we further allow variable length subnames, we can also 
derive the best naming scheme with the smallest advertising 
cost by solving 

  (22) 

To derive the solution, rewrite the cost as 

  (23) 

Because the subname  takes one of  possible values, we 

can partition  into  groups, , each 

group corresponding to a particular value from  with the  

subname lengths of bits, respectively. The 

definition of  is 

 
(24) 

Therefore 



  (25) 

Again, define  that represents a PMF over the  values 

 
(26) 

Let  be the entropy of  and  be the th component 

of . The first summation indicates that the objective is 
decomposable. We are allowed to optimize each subname 
indexed by  separately. According to the entropy coding 

theory,  is minimized if we set 

 . (27) 

As a result 

  (28) 

V. BANDWIDTH OVERHEAD COMPARISON OF DHT AND 

FLOODING BASED NAME RESOLUTION 

Fixed length naming can be regarded as a special case of 
the variable length naming with a rigid constraint. Therefore it 
usually does not achieve the lowest naming cost as the 
variable-length naming does. As variable length naming 
schemes shown in (18) and (28) represent the lowest cost 
schemes, we may compare DHT and flooding when both are 
tuned optimally and see under what network scenarios DHT is 
superior to flooding, or vice versa. The comparison also reveals 
the best use cases for either scheme. For DHT, we can rewrite 
(11) in a different form: 

 

(29) 

Let  be the rate at which  sends out requests and let 

  (30) 

then 

  (31) 

(31) is due to different factorization using Bayesian's law. 

Similarly we define  to be the rate at which  inserts new 
content and define 

 , (32) 

then 

  (33) 

Further, let  be the node label of the  resolvers. 

Given two node labels , let  be the distance 

measured in hops between node  and node . Then we have 

 

(34) 

Note the third equal sign follows from the assumption that any 
node will send requests to the  resolvers with a uniform 
distribution. Similarly 

(35) 

Note the third equal sign follows from the assumption that any 
node  will insert in the  resolvers with a uniform distribution. 
Plug (31) and (33) into (29) and make use of (34) and (35), we 
get 

 

 

(36) 

where we have defined 

  (37) 

as the average distance from a node to a resolver, weighted by 

the sum of request rate and insertion rate. Let us assume that  
is independent of the request rates and content generation rates 
at each node. This assumption would be true if we place a large 
number of resolvers randomly in the network, which is indeed 
the acceptable design choice to balance the load of resolution 



traffic. But under this assumption, we approximate  by its 

statistical mean  over random variables  and  

 

 

(38) 

Because the resolvers are located randomly, 

 can be considered as the average hop distance 

between a randomly chosen node and a sample of  randomly 

chosen nodes. Since  is assumed to be large,  should be 
close to the average distance between any two randomly picked 

nodes on the Internet, denoted as . We thus make this 
approximation and get 

  (39) 

 

We can also rewrite the advertising cost of the flooding 
scheme. Note 

  (40) 

which is true because the two sides of the equation are equal to 
the total new content generation rate of the network, we may 
write 

  (41) 

From (36) and (41), we can see that DHT has a smaller factor 

of  as in  compared to the factor  in . Therefore 

in a richly connected network, the advertising cost may be 
prohibitive for flooding. On the other hand, DHT has a larger 

factor of  compared to  of flooding. If a 

large number of content objects are requested over the network, 
DHT may be less cost effective. Unfortunately, future Internet 
features both rich connection and high content utility. Neither 
DHT nor flooding can be taken as the absolutely preferred 
approach. However, (36) and (41) enable us to derive the 
tradeoff between DHT and flooding. In general, we would 
choose DHT over flooding if 

  (42) 

i.e.,  

  (43) 

To make a first order comparison, let  denote 

the total content request rate of the network. Let  

denote the total content generation rate. For flooding, we 
further assume that, due to name compression, different 
subnames take their values independently. Due to the 
independent subname assumption, when perfect variable length 
naming is used in flooding and DHT, we would have 

  (44) 

Then we would choose DHT if 

  (45) 

Studies [14][15] of graph theory and Internet topology 
shows that for scale-free networks exhibiting power law degree 
distribution, we have 

  (46) 

where  is the total number of nodes and  the average degree 
of each node. For the Internet, , but we do not have 
an accurate number for , partly because  is ever growing. 
On the other hand, let  be the degree of node . By Euler's 

theorem, 

  (47) 

Therefore, we choose DHT if 

  (48) 

We plot in Fig. 1 the right-hand side of (48) in terms of , 
with  and . The lower region delineated by the 
curve represents the scenario where we would prefer DHT. The 
decision curve is largely linear in the log-log setting. As 
network grows in size, we become more in favor of DHT, 
unless  grows at the same rate. For example, if there are 

 nodes in the network, we would choose CCN over DHT if 
the content request rate is at least  times higher than the 
generation rate. 

 

Fig. 1 The critical value of  to choose DHT over CCN 



VI. WHEN IS AGGREGATION PRFERRED IN DHT? 

In this section, we answer the question in a DHT based 
network that, given a set of content names, should we 
aggregate them or not, and if yes, what the optimal aggregation 
would be. In Section VII, we answer the same question in a 
flooding based network. Aggregation is publishing technique 
by a CR transparent to users. Once we fix the naming scheme – 
fixed length or variable length – the cost due to request would 
no longer change regardless we use aggregation or not. 
Therefore in this section, our definition of cost does not include 
the cost due to request. However, as we use Bloom filter as the 
primary aggregation technique, a nonzero false positive 
probability is inevitable, which leads to a portion of the 
requests erroneously resolved. Before aggregation happens, a 
CR first identifies a collection of sets of content that it can 
possibly possess and that would be inserted into the same 
resolver, called aggregatable sets. Only these sets will be 
considered for aggregation. Let  be the size of an 
aggregatable set and suppose a CR possesses  content 
files from this set. If the CR decides to aggregate the set, it 
generates a -bit Bloom filter summarization of the  content 
objects and sends it to the resolver. The updating period is  
seconds, i.e., every  seconds, a new decision needs to be 
made. Each content object has an effective name length of  
bits. Without aggregation, cost associated with the  content 
objects would be 

 

 

(49) 

where  represents the average distance between the CR and 
the corresponding resolver. Suppose  Hash functions are used 
to generate the summarization for aggregation, there will be 
additional cost that is due to the false positive probability, 

  (50) 

Consequently, the cost consists of three parts, the insertion 
cost, request cost for the  contents and request cost due to 
false positive, which would not exists if it were not for the 
resolution error. Noting the average hop count between an end 

user and a resolver is , we have 

 

 

(51) 

Because (49) and (51) share three common terms –  

“request cost for  contents”,  and . We can drop these 
terms from both expressions and let 

  (52) 

and 

  (53) 

for the purpose of comparison, where we have defined for 
convenience 

  (54) 

which is the rate at which name resolution errors happen. Since 
the CR computes the Bloom filter summarization and updates it 
with the resolver,  is the insertion cost. The second term 
represents the cost of name resolution error due the intrinsic 
false positive behavior of the Bloom filter.  

Both  and  are minimized if the smallest  

is used. Since  needs to be big enough to distinguish  
contents, it is clear that 

  (55) 

Now assume . For the aggregation scheme, we need 

to properly design the Bloom filter to minimize , i.e., we 

should determine , the the Bloom filter length and , the 
number of hash functions used. Let . First we note if 

, then it is trivially true that aggregation is better since 
in this case the CR can send a  bit Bloom filter indicating the 
possession of all  contents. This will lead to a false positive 
probability of  that incurs a cost of . Thus we only consider 
the interesting case where . In this case, the optimal  

that minimizes  is given by 

  (56) 

which gives 

  (57) 

We further minimize  by choosing the optimal filter 

length : 

 
 

(58) 

which leads to 

 

 

(59) 

Therefore we would choose not to aggregate if 

, i.e., 



  (60) 

This condition can be rewritten as 

  (61) 

Define 

  (62) 

By our assumption, . We can rewrite the criterion (61) as 

  (63) 

For a given , there exists the smallest  that satisfies (59), 
meaning a smallest  that can possibly make non-aggregation 
a better choice. 

 

Fig. 2 The maximum name length  (  is the number of 

content objects) to justify non-aggregation as a function of . 

Fig. 2 shows the decision curve. The horizontal axis is . 
For each , the vertical axis gives the largest  that makes 
(63) hold true, which equivalently puts an upper bound on the 
number of content objects this network contains, i.e., . 
As a matter of fact, (63) has an approximate solution 

  (64) 

When  gets larger, it means a larger portion of requests cannot 
be served by the responsible CR. In other words,  measures 
the repository inefficiency of the CR by the ratio of unservable 
content requests per content object it holds. However, we 
expect that in a large content network, the content inefficiency 
is generally high. In this case, if non-aggregation is a better 
choice, we require  not to exceed an upper bound, i.e., 

  (65) 

Essentially  increases roughly quadraticly with . 

While this discussion solves the issue whether or not to 
aggregate. It does not tell which sets to aggregate. For example, 
Fig. 3 shows the contents that a repository owns as represented 
by yellow dots. The entire space of content objects shown in 
the red square are all the possible requests the resolvers may 
receive. The repository may choose either faithfully reporting 
each content name, or aggregating certain sets as delineated in 
white. Apparently, the small square region  at the lower left 
corner has a greater opportunity to be aggregated because 
content objects within that region not held by the repository are 

few. (63) can be used to make the aggregation decision. 
However, it is not clear whether it has more benefits to 
aggregate  and  together from (63). 

 

Fig. 3 Representing the contents on a repository as yellow dots. 

By evaluating (63) one can tell if aggregating contents in region  

is better than non-aggregation. 

VII. WHEN IS AGGREGATION PREFERRED IN FLOODING? 

The analysis about when aggregation is preferred over non-
aggregation in a flooding based network follows basically the 
same line with a few twitches. Because the flooding based 
network features a tree-structured name space, with each name 
consisting of consecutive subnames, there is a natural and 
conventional partition of the name space into aggregatable 
subtrees. Because each subtree is identified by its root, 
aggregation can be done partially with flooding as opposed to 
DHT. Specifically, suppose each name consists of  elements 
and a node is identified by the first  elements, then  
elements of content names that lie in the same subtree (i.e., 
sharing the first  elements in their names) can be aggregated. 
Moreover, a general approach to aggregate the  elements 
would be to generate a Bloom filter summarization to each 
subname  of lengths , using 

Bloom filters of length  bits, with 

 hash functions. The CR then appends the 

 summarizations after the  subnames to generate the 
complete entry for flooding. Assume there are  contents that 
belong to the subtree and  of them belong to a 
particular CR, then the advertising cost for non-aggregation is 

  (66) 

and for aggregation 

 

 

(67) 



We already know that the optimal  

are given by 

  (68) 

therefore, the optimal aggregation would imply 

 

 

(69) 

Let 

 

 

(70) 

then we have 

  (71) 

and 

  (72) 

Note (71), (72) are exactly the same with (52), (57). Therefore 
the same conclusion follows -- aggregation is preferred over 
non-aggregation if and only if 

  (73) 

where . Like Section VI, our discussion merely 
answers the question whether to aggregate a given subtree. It is 
still an open question that, given multiple subtrees (not 
necessarily disjoint), which should be aggregated in order to 
minimize the cost. 

VIII. CONCLUSION 

In this paper, we investigate the implications of name 
resolution overhead in DHT and in flooding based information 
centric networks, two competitive candidates for the future 
Internet architectures. The main difference between the two 
architectures lies in the way of naming content objects on the 
Internet. While DHT assigns flat names to content objects, 
flooding uses a hierarchical naming scheme. This difference 
entails different design choices in routing and routing table 
population. Our paper specifically discussed some costs 
associated with these differences. We discussed in both 
architectures the name resolution overhead with fixed length 
and variable length names, when aggregation is not used. From 
this discussion, we made a baseline comparison of the 
architectures and identified the situations where one 

architecture is preferred over the other. We then discussed the 
name aggregation with the assistance of Bloom filters in either 
architecture separately. We presented the criterion that 
determines when aggregating a set of content objects incurs 
lower cost than non-aggregation, and when aggregation is 
preferred, what the optimal aggregation scheme would be. In 
all subjects covered in this paper, we strived to make a 
pronounced comparison of DHT and flooding side by side. We 
believe our preliminary work can serve as a first order 
guideline for ICNs. We also hope that this work may inspire 
interest from network researchers to look deeper into the issue 
of quantitatively modeling future Internet architectures. 
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