
DHT or Flooding: A Comparative Study of Name

Resolution Approaches in Information Centric

Networks

Dan Zhang

WINLAB, Rutgers University

671 US-1 South, North Brunswick, NJ 08902

Email: zhangdan@gmail.com

Hang Liu

InterDigital Communications, LLC

781 Third Ave, King of Prussia, PA 19406

Email: hang.liu@interdigital.com

Abstract—Name resolution techniques in Information Centric

Networks (ICNs) have split into two themes. In one theme as

adopted by the Content Centric Network (CCN) architecture,

content availability is advertised to all content routers in a

network via a flooding protocol in support of name-based

routing. In the other theme featuring the deployment of

distributed name resolution servers, content location information

is inserted to one or more servers, and subsequent requests must

be resolved thereby. While remarkable research has taken place

in both directions, there still lacks a quantitative model to

characterize the bandwidth overhead associated with the two

name resolution approaches. From a networking practitioner's

point of view, the bandwidth overhead can be decomposed into

two parts, one for data delivery and the other for content name

resolution. Minimizing the latter entails proper content object

naming and name aggregation, as done with IP addresses. This

paper proposes models for quantifying the overhead associated

with name resolution, without and with name aggregation. Based

on these models, this paper also makes baseline comparisons of

the two major name resolution approaches in ICNs in terms of

their bandwidth overhead. Our comparison reveals essential

design tradeoffs and principal design guidelines.

Keywords-information centric network, DHT, flooding, name

resolution

I. INTRODUCTION

Future Internet has been envisioned as built around content
[1][2][3], instead of host-to-host connections that characterize
today's Internet. This new paradigm of networking is motivated
by observing that the dominant traffic of Internet is no longer
host-to-host communications, but content requests and
deliveries for which the primary interest to the end users is the
content objects themselves. Users usually have least interest in
where these content objects are hosted and how they are
handled in the network, as long as they get exactly what they
need in a prompt and robust manner. Host oriented networking
architecture has limited potential to meet this drastically
increasing expectation. A number of clean-slate information-
centric network (ICN) architectures [1]-[8] have thus been
proposed. While these proposals are diverse in nature,
reflecting different utility perceptions of the future Internet by
researchers, the core philosophies are essentially the same -- an
Internet that serves content in the most versatile and efficient
way. Two streams of ICN architecture studies have been
dominant in current literature. The flooding based architecture,

represented by Content Centric Network (CCN) [1], assigns
content objects with distinct hierarchical names that are
mapped from human-readable names by some coding rules.
The hierarchical names enable flexible user-content interaction.
Reuse of OSPF-like routing algorithm (hence a smooth
upgrading) and transparent name aggregation are also made
possible, much in the same way of longest prefix match for IP
addresses. When flooding is used, a content router (CR)
advertises the names of content objects which it can serve from
its repository to other CRs as an IP router advertises its link
states. Any other CRs can then forward the request for a
content object to the best content source(s) based on the
requested content name. Strictly speaking, a repository may or
may not be a standalone detached from the CR and it may even
be possible to be co-located with the CR. For the purpose of
our paper, we do not make this distinction and assume each CR
has its own repository which is nothing more than a massive
storage device. We also assume that the CR takes sole
responsibility handling the content objects in its repository
including, among other things, generating new content objects
and removing outdated content objects. Although flooding
based routing has been successful for IP networks, flooding
faithfully the names of all the content objects can be
impractical given the sheer quantity that can easily exceed the
number of IP addresses by several magnitudes. Furthermore,
the content objects may be dynamically generated and deleted
in a network due to caching and cache replacement.

An equally competitive architecture, motivated by research

in P2P networks [4][5][6][7], is thus designed to avoid the

unbearable flooding traffic, using the so-called Distributed

Hash Tables (DHT). DHT provides a distributed lookup

service. It uses a hash function to associate an identifier, also

called a key, to a content object and maps the identifier onto a

node based on the node identifier. Content location resolution

can be implemented with DHT by storing the content name-

location binding information at the node to which the

identifier maps. The node is also referred to as the resolver.

One way to generate the content mapping identifier for a

content object is to hash the hierarchical name or other types

of names of the content object. The content identifier is then

mapped to the resolver whose identifier is the closest to and

not exceeding the content identifier in the hash space. A CR

informs the mapped resolver for a content object it will serve

through insertion/publishing process. Any participating CR

can identify the resolver for a requested content object using

its hashed content identifier. It can retrieve the content

location information (an IP address or a more general directive

for forwarding) from the resolver, and then the content object

itself from the source. The hashing process makes the

identifiers uniformly mapped to the set of resolvers.
It is possible to map and store the content location

information to multiple DHT resolvers for better fault
tolerance. Our discussion in this paper is based on the one-to-
one mapping, which is simpler yet captures the central idea.
Extension to one-to-many mapping is straightforward based on
our discussion here. As DHT does not require flooding in
content publishing process and a CR only need communicate to
the necessary resolvers about the names of the content objects
it provides, there seems to be a dramatic decrease in bandwidth
overhead compared with flooding. However, DHT requires
additional actions to complete name resolution during the
content retrieval process – whenever an end user wants a
content object, it has to send a name resolution query to the
corresponding resolver, before a content request can be sent to
the target CR. If we compare flooding and DHT based
resolution techniques, we immediately see a major design
tradeoff. Flooding of content availability information in a
network potentially wastes bandwidth but saves the need of
name resolution query. Note that we consider flooding is a
name resolution scheme that lets all other CRs know the
content location information. It therefore remains unclear
which is better under what condition, causing a lasting debate
between the two schools of thoughts.

A possible remedy that lowers the wasteful flooding traffic
is inspired by IP aggregation. If a set of content names can be
justifiably aggregated before being advertised throughout the
network, a substantial saving in bandwidth may be achieved.
Fortunately, the hierarchical name structure enables natural
aggregation opportunity by using prefix aggregation, a
technique that has become fundamental for today’s longest
prefix routing in Internet. One exception is necessary. Due to
transient nature and large quantity of networked content
objects, pure prefix aggregation that guarantees faultless name
resolution is not sufficient. In fact, a certain amount of
resolution error is tolerable in exchange for scalability in name
resolution overhead. The Bloom filter [11] [12] is one of such
lossy aggregation techniques that effectively generates the
summarization of a set of names, with controllable error
probability. Even with DHT based name resolution, the Bloom
filter technique may still prove valuable. The question that is
common to both resolution mechanisms is, given a set of
names, should we aggregate them or not. If the answer is yes,
what would be the best aggregation scheme in terms of the
Bloom filter and error probability design. This paper also
addresses these issues in the context of both flooding and DHT
resolutions.

This paper, to authors' knowledge, is the first work that
attempts to perform a comparative study of name resolution
and routing approaches in ICN networks and tries to answer a
few questions quantitatively: (1) what are the design tradeoffs
between flooding and DHT-based name resolution schemes
under different network scenarios, and (2) what are the impacts
of name aggregation to these name resolution schemes. For

completeness, we would like to point out that some quantitative
models have been proposed for the throughput of flooding
based ICNs, such as CCN [9][10]. But these previous works
focused on the cost of data delivery, but our work focuses on
name resolution, i.e. control overhead of these networks.

II. NETWORK MODELS

In this section we describe the respective network models
to implement flooding and DHT name resolution mechanisms.
The discussion is necessarily simplistic, capturing only the
essential properties that are relevant to the problems addressed
in this paper. The flooding network model is similar to IP
networks, consisting of so called content routers (CRs). These
routers not only execute the routing protocol but also take a
number of functionalities not found in IP routers. In particular,
these CRs are responsible for managing the content objects in
the attached network and advertising them. DHT network has
routers as well as a special type of elements called resolvers,.
Routers are still responsible of managing the content objects
generated in its attached networks, but only inform the
corresponding resolvers about the existence of the content
objects. Note that the resolver function can be distributively co-
located within CRs, i.e. a CR is also one of the resolvers in the
DHT network. For generality and ease of explanation, we
separate these two functions. Specifically, a router informs a
particular resolver about the availability of a content object if
and only if the content identifier is mapped to the resolver in
the hash space. When a router wants to retrieve a content
object, it queries the corresponding resolver for the content's
location (e.g., the address of the router that manages this piece
of content) and forwards the request to the target router. We are
mainly concerned with the name resolution overhead in this
paper, i.e., we do not quantify the bandwidth overhead incurred
in forwarding the request to the content holder and retrieving
the content back, partially because the mechanisms for these
purposes are applicable to both flooding based and DHT based
networks, therefore they are not sufficient to distinguish the
capabilities of the two name resolution schemes or their apt use
cases. Rather, we derive mathematical models for the overhead
associated with flooding advertisement as well as name
insertion and name resolution request – basic operations that
have been commonly agreed upon that characterize the
underlying network architecture. Our analysis shows how the
overhead scales with the size of the network or the number of
content objects. It also offers a few insights into important
design considerations, including content naming, partial
aggregation and resolution error rate optimization.

We consider an ICN network with stable network topology
i.e. the CRs are fixed and stable, while the locations of content
objects change due to dynamic content generation and cache
replacements. The nodes that participate in the DHT are stable,
and the overhead for maintaining the DHT structure is very
small compared to the traffic for content location publishing
and query. Note that this is different from a P2P network where
peer churns are frequent.

Specifically, our network is modeled as a directed graph
G N E with N . Content objects are created on a CR,
kept for some time, and then removed. In a steady state, we
assume the total number of content objects is . Thus we can

always label the contents in the network by for the
purpose of explaining our modeling. Note that the content label
and content name is different. A label always refers to a
content object on a particular router, for example, c1 represents
a content object on CR1. However the underlying content
object (and its name) labeled by , can be changed. In the
steady state, we can nevertheless make the assumption that the
request rate for content is and that the new content object
under the label is generated at a rate of . By this
assumption, we are essentially saying that when the network
has entered the steady state, not only the number of content
objects is roughly constant, so are their popularity and
generation rates. For content generation, it is understood that
when a new content is generated under the label of , the
content previously labeled is removed from the network.
Therefore, we may assume the generation rate is equal to the
replacement rate. This assumption is critical for this paper.
Therefore, the authors would like to give further intuitive
justification as how specific content objects are identified with
their appropriate labels: The content objects on a particular
router can be partitioned into groups such that group

contains only content objects that have roughly the same
popularity (request rate) and life span . When the Internet

has entered the steady state and given the number of content
objects managed by a router is usually huge, we expect the
group sizes remain constant. Although the actual content object
represented by is time variant, at any time, each content

object in can be assigned a specific label with

and . This construction also shows that the definition
of generation rate only makes sense from the ensemble
view.

Let’s consider both name resolution schemes, flooding and
DHT, not preclude variable length names. We will analyze
both fixed-length naming and variable-length naming schemes.
The resolution overhead studied in this paper, without or with
aggregation, is measured in terms of bandwidth-hop product,
scaled by name resolution error rate. Specifically, give a
content object whose name has the effective length of bits,
this name needs to be resolved first at the resolver with the
DHT mechanism, which might be hops away from the node
that initiates the request. The bandwidth-hop product is thus
defined as . The effective length of a content object name is
the cost to transmit a control packet carried the name. It is the
actual name size plus certain packetization and transmission
overhead. The bandwidth-hop product provides a coarse
measure of the bandwidth overhead of the network for name
resolution. Similarly, when new content objects are generated,
there is an overhead for inserting the names of these content
objects into the resolvers. We call it insertion overhead or
insertion cost. We recognize that there is additional overhead
when the resolver returns the resolved address. Also, when new
names are inserted into the resolver, extra information is
probably sent along to the resolver. However, we ignore this
overhead since they are associated with addresses or
information other than content names. How much of this
information (e.g., how many bits per address) will be needed
remains an open problem and may vary from one design to
another. Consequently, we restrict ourselves to consider only
content name incurred overhead. It should be straightforward to

incorporate the extra information in the calculation by
following the line presented in this paper.

III. BANDWIDTH OVERHEAD OF DHT

Suppose has an effective name length of bits. Define

 (1)

and let be the number of hops from to the resolver of .

The overhead associated with name resolution request in a unit
time (call it resolution cost rate) is

 (2)

For ease of explanation, we assume the request and replay
incurs the same bandwidth cost. can be further written as

 (3)

where we have defined as the rate at which requests for

 (4)

and the average total hops incurred by all possible
resolutions for from all the nodes

 (5)

Similarly we can define the insertion cost rate as

 (6)

where

 (7)

Define as the rate at which inserts

 (8)

and as the average total hops due to inserting

 (9)

then we may write

 (10)

The total resolution cost rate is thus given as

 (11)

(11) is the general formula to calculate the total cost rate
with DHT, no matter fixed length naming or variable length

naming is used. In the following, we consider both scenarios in
more details.

A. DHT Resolution Cost Rate with Fixed Name Length

We look at the special scenario where
According to (11), the total cost rate with fixed length naming
is

 (12)

We impose the natural constraint that these names must be
distinct for the contents that exist in the network so that
faultless name resolution is possible. Clearly at least we need

 bits for each name, in which case the cost is minimized
as

 (13)

B. DHT Resolution Cost Rate with Variable Name Lengths

Relaxing the fixed length naming assumption, we may still
require faultless name resolution. We can at the same time seek
to minimize the total cost rate using variable-length names.
This problem can be formulated as

 (14)

(14) can be solved by the entropy coding theory [13].
Specifically, define vector

 (15)

which constitutes the probability mass function (PMF) over the
 content objects. Let be the th component of and

be the entropy of the PMF represented by , then

 (16)

solves (14). For the purpose of this paper, the optimal can
be approximated by

 (17)

The approximation of will be repeatedly and implicitly
employed in what follows. Consequently

 (18)

IV. BANDWIDTH OVERHEAD OF FLOODING

The flooding mechanism is generally implemented in CCN-
type network architectures in which content names usually
have a hierarchical structure consisting of subnames like a
encoded URL. Suppose each name consists of subnames

. The subname is considered as an element

from a space of values. Thus we may consider each

name comes from the space . As a result, all the
names form a tree with each node in the -th tier of the tree
represents a specific value from . The uniqueness of a name
is guaranteed by identifying a unique path from the root node
to a leaf node as the name. As flooding is commonly referred to
as advertisement, we also call the bandwidth overhead with
flooding the advertising cost.

Suppose 's subnames have length , then the
advertising cost can be written as

 (19)

where is the total number of links in the network. (19) is true
because each name must be flooded over the entire network,
i.e., over links.

A. Advertising Cost with Fixed Length Subnames

If we use fixed length subnames, the maximum number of
bits we need is for , in which case the advertising
cost is minimized as

 (20)

Note it is necessarily true that

 (21)

B. Advertising Cost with Variable-Length Names

If we further allow variable length subnames, we can also
derive the best naming scheme with the smallest advertising
cost by solving

 (22)

To derive the solution, rewrite the cost as

 (23)

Because the subname takes one of possible values, we

can partition into groups, , each

group corresponding to a particular value from with the

subname lengths of bits, respectively. The

definition of is

(24)

Therefore

 (25)

Again, define that represents a PMF over the values

(26)

Let be the entropy of and be the th component

of . The first summation indicates that the objective is
decomposable. We are allowed to optimize each subname
indexed by separately. According to the entropy coding

theory, is minimized if we set

 . (27)

As a result

 (28)

V. BANDWIDTH OVERHEAD COMPARISON OF DHT AND

FLOODING BASED NAME RESOLUTION

Fixed length naming can be regarded as a special case of
the variable length naming with a rigid constraint. Therefore it
usually does not achieve the lowest naming cost as the
variable-length naming does. As variable length naming
schemes shown in (18) and (28) represent the lowest cost
schemes, we may compare DHT and flooding when both are
tuned optimally and see under what network scenarios DHT is
superior to flooding, or vice versa. The comparison also reveals
the best use cases for either scheme. For DHT, we can rewrite
(11) in a different form:

(29)

Let be the rate at which sends out requests and let

 (30)

then

 (31)

(31) is due to different factorization using Bayesian's law.

Similarly we define to be the rate at which inserts new
content and define

 , (32)

then

 (33)

Further, let be the node label of the resolvers.

Given two node labels , let be the distance

measured in hops between node and node . Then we have

(34)

Note the third equal sign follows from the assumption that any
node will send requests to the resolvers with a uniform
distribution. Similarly

(35)

Note the third equal sign follows from the assumption that any
node will insert in the resolvers with a uniform distribution.
Plug (31) and (33) into (29) and make use of (34) and (35), we
get

(36)

where we have defined

 (37)

as the average distance from a node to a resolver, weighted by

the sum of request rate and insertion rate. Let us assume that
is independent of the request rates and content generation rates
at each node. This assumption would be true if we place a large
number of resolvers randomly in the network, which is indeed
the acceptable design choice to balance the load of resolution

traffic. But under this assumption, we approximate by its

statistical mean over random variables and

(38)

Because the resolvers are located randomly,

 can be considered as the average hop distance

between a randomly chosen node and a sample of randomly

chosen nodes. Since is assumed to be large, should be
close to the average distance between any two randomly picked

nodes on the Internet, denoted as . We thus make this
approximation and get

 (39)

We can also rewrite the advertising cost of the flooding
scheme. Note

 (40)

which is true because the two sides of the equation are equal to
the total new content generation rate of the network, we may
write

 (41)

From (36) and (41), we can see that DHT has a smaller factor

of as in compared to the factor in . Therefore

in a richly connected network, the advertising cost may be
prohibitive for flooding. On the other hand, DHT has a larger

factor of compared to of flooding. If a

large number of content objects are requested over the network,
DHT may be less cost effective. Unfortunately, future Internet
features both rich connection and high content utility. Neither
DHT nor flooding can be taken as the absolutely preferred
approach. However, (36) and (41) enable us to derive the
tradeoff between DHT and flooding. In general, we would
choose DHT over flooding if

 (42)

i.e.,

 (43)

To make a first order comparison, let denote

the total content request rate of the network. Let

denote the total content generation rate. For flooding, we
further assume that, due to name compression, different
subnames take their values independently. Due to the
independent subname assumption, when perfect variable length
naming is used in flooding and DHT, we would have

 (44)

Then we would choose DHT if

 (45)

Studies [14][15] of graph theory and Internet topology
shows that for scale-free networks exhibiting power law degree
distribution, we have

 (46)

where is the total number of nodes and the average degree
of each node. For the Internet, , but we do not have
an accurate number for , partly because is ever growing.
On the other hand, let be the degree of node . By Euler's

theorem,

 (47)

Therefore, we choose DHT if

 (48)

We plot in Fig. 1 the right-hand side of (48) in terms of ,
with and . The lower region delineated by the
curve represents the scenario where we would prefer DHT. The
decision curve is largely linear in the log-log setting. As
network grows in size, we become more in favor of DHT,
unless grows at the same rate. For example, if there are

 nodes in the network, we would choose CCN over DHT if
the content request rate is at least times higher than the
generation rate.

Fig. 1 The critical value of to choose DHT over CCN

VI. WHEN IS AGGREGATION PRFERRED IN DHT?

In this section, we answer the question in a DHT based
network that, given a set of content names, should we
aggregate them or not, and if yes, what the optimal aggregation
would be. In Section VII, we answer the same question in a
flooding based network. Aggregation is publishing technique
by a CR transparent to users. Once we fix the naming scheme –
fixed length or variable length – the cost due to request would
no longer change regardless we use aggregation or not.
Therefore in this section, our definition of cost does not include
the cost due to request. However, as we use Bloom filter as the
primary aggregation technique, a nonzero false positive
probability is inevitable, which leads to a portion of the
requests erroneously resolved. Before aggregation happens, a
CR first identifies a collection of sets of content that it can
possibly possess and that would be inserted into the same
resolver, called aggregatable sets. Only these sets will be
considered for aggregation. Let be the size of an
aggregatable set and suppose a CR possesses content
files from this set. If the CR decides to aggregate the set, it
generates a -bit Bloom filter summarization of the content
objects and sends it to the resolver. The updating period is
seconds, i.e., every seconds, a new decision needs to be
made. Each content object has an effective name length of
bits. Without aggregation, cost associated with the content
objects would be

(49)

where represents the average distance between the CR and
the corresponding resolver. Suppose Hash functions are used
to generate the summarization for aggregation, there will be
additional cost that is due to the false positive probability,

 (50)

Consequently, the cost consists of three parts, the insertion
cost, request cost for the contents and request cost due to
false positive, which would not exists if it were not for the
resolution error. Noting the average hop count between an end

user and a resolver is , we have

(51)

Because (49) and (51) share three common terms –

“request cost for contents”, and . We can drop these
terms from both expressions and let

 (52)

and

 (53)

for the purpose of comparison, where we have defined for
convenience

 (54)

which is the rate at which name resolution errors happen. Since
the CR computes the Bloom filter summarization and updates it
with the resolver, is the insertion cost. The second term
represents the cost of name resolution error due the intrinsic
false positive behavior of the Bloom filter.

Both and are minimized if the smallest

is used. Since needs to be big enough to distinguish
contents, it is clear that

 (55)

Now assume . For the aggregation scheme, we need

to properly design the Bloom filter to minimize , i.e., we

should determine , the the Bloom filter length and , the
number of hash functions used. Let . First we note if

, then it is trivially true that aggregation is better since
in this case the CR can send a bit Bloom filter indicating the
possession of all contents. This will lead to a false positive
probability of that incurs a cost of . Thus we only consider
the interesting case where . In this case, the optimal

that minimizes is given by

 (56)

which gives

 (57)

We further minimize by choosing the optimal filter

length :

(58)

which leads to

(59)

Therefore we would choose not to aggregate if

, i.e.,

 (60)

This condition can be rewritten as

 (61)

Define

 (62)

By our assumption, . We can rewrite the criterion (61) as

 (63)

For a given , there exists the smallest that satisfies (59),
meaning a smallest that can possibly make non-aggregation
a better choice.

Fig. 2 The maximum name length (is the number of

content objects) to justify non-aggregation as a function of .

Fig. 2 shows the decision curve. The horizontal axis is .
For each , the vertical axis gives the largest that makes
(63) hold true, which equivalently puts an upper bound on the
number of content objects this network contains, i.e., .
As a matter of fact, (63) has an approximate solution

 (64)

When gets larger, it means a larger portion of requests cannot
be served by the responsible CR. In other words, measures
the repository inefficiency of the CR by the ratio of unservable
content requests per content object it holds. However, we
expect that in a large content network, the content inefficiency
is generally high. In this case, if non-aggregation is a better
choice, we require not to exceed an upper bound, i.e.,

 (65)

Essentially increases roughly quadraticly with .

While this discussion solves the issue whether or not to
aggregate. It does not tell which sets to aggregate. For example,
Fig. 3 shows the contents that a repository owns as represented
by yellow dots. The entire space of content objects shown in
the red square are all the possible requests the resolvers may
receive. The repository may choose either faithfully reporting
each content name, or aggregating certain sets as delineated in
white. Apparently, the small square region at the lower left
corner has a greater opportunity to be aggregated because
content objects within that region not held by the repository are

few. (63) can be used to make the aggregation decision.
However, it is not clear whether it has more benefits to
aggregate and together from (63).

Fig. 3 Representing the contents on a repository as yellow dots.

By evaluating (63) one can tell if aggregating contents in region

is better than non-aggregation.

VII. WHEN IS AGGREGATION PREFERRED IN FLOODING?

The analysis about when aggregation is preferred over non-
aggregation in a flooding based network follows basically the
same line with a few twitches. Because the flooding based
network features a tree-structured name space, with each name
consisting of consecutive subnames, there is a natural and
conventional partition of the name space into aggregatable
subtrees. Because each subtree is identified by its root,
aggregation can be done partially with flooding as opposed to
DHT. Specifically, suppose each name consists of elements
and a node is identified by the first elements, then
elements of content names that lie in the same subtree (i.e.,
sharing the first elements in their names) can be aggregated.
Moreover, a general approach to aggregate the elements
would be to generate a Bloom filter summarization to each
subname of lengths , using

Bloom filters of length bits, with

 hash functions. The CR then appends the

 summarizations after the subnames to generate the
complete entry for flooding. Assume there are contents that
belong to the subtree and of them belong to a
particular CR, then the advertising cost for non-aggregation is

 (66)

and for aggregation

(67)

We already know that the optimal

are given by

 (68)

therefore, the optimal aggregation would imply

(69)

Let

(70)

then we have

 (71)

and

 (72)

Note (71), (72) are exactly the same with (52), (57). Therefore
the same conclusion follows -- aggregation is preferred over
non-aggregation if and only if

 (73)

where . Like Section VI, our discussion merely
answers the question whether to aggregate a given subtree. It is
still an open question that, given multiple subtrees (not
necessarily disjoint), which should be aggregated in order to
minimize the cost.

VIII. CONCLUSION

In this paper, we investigate the implications of name
resolution overhead in DHT and in flooding based information
centric networks, two competitive candidates for the future
Internet architectures. The main difference between the two
architectures lies in the way of naming content objects on the
Internet. While DHT assigns flat names to content objects,
flooding uses a hierarchical naming scheme. This difference
entails different design choices in routing and routing table
population. Our paper specifically discussed some costs
associated with these differences. We discussed in both
architectures the name resolution overhead with fixed length
and variable length names, when aggregation is not used. From
this discussion, we made a baseline comparison of the
architectures and identified the situations where one

architecture is preferred over the other. We then discussed the
name aggregation with the assistance of Bloom filters in either
architecture separately. We presented the criterion that
determines when aggregating a set of content objects incurs
lower cost than non-aggregation, and when aggregation is
preferred, what the optimal aggregation scheme would be. In
all subjects covered in this paper, we strived to make a
pronounced comparison of DHT and flooding side by side. We
believe our preliminary work can serve as a first order
guideline for ICNs. We also hope that this work may inspire
interest from network researchers to look deeper into the issue
of quantitatively modeling future Internet architectures.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of 5th
Internet Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT’09. ACM, 2009, pp. 1–12.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S.
Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Conference on Applications, technologies,
architectures, and protocols for computer communications, ser.
SIGCOMM’07. ACM, 2007, pp. 181–192.

[3] D. R. Cheriton and M. Gritter, “TRIAD: A scalable deployable NAT-
based Internet architecture,” Tech. Rep., 2000. [Online]. Available:
http://www-dsg.stanford.edu/triad/

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proceedings of ACM
SIGCOMM, San Diego, CA, August 2001, pp. 161–172.

[5] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in
Proceedings of 18th IFIP/ACM International Conference on Distributed
Systems Platforms, ser. Middleware’01, November 2001, pp. 329–350.

[6] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu, “Dynamically
faulttolerant content addressable networks,” in Proceedings of 1st
International Workshop on Peer-to-Peer Systems, ser. IPTPS’01, March
2002, pp. 270–279.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of ACM SIGCOMM, San Diego, CA,
2001, pp. 149–160.

[8] S. C. Nelson, G. Bhanage, D. Raychaudhuri, “GSTAR: generalized
storage-aware routing for MobilityFirst in the future mobile Internet,” in
Proceedings of 6th international workshop on MobiArch, pp. 19-24,
Bethesda, MD, 2011.

[9] S. Oueslati, J. Roberts, and N. Sbihi, “Flow-aware traffic control for a
content-centric network,” in Proceedings of IEEE Infocom, Orlando, FL,
March 2012, pp. 2417–2425.

[10] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling data
transfer in content-centric networking,” in Proceedings of 23rd
International Teletraffic Congress, ser. ITC’11, 2011, pp. 111–118.

[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, July
1970.

[12] H. Liu, D. Zhang, “A TLV-structured data naming scheme for content-
oriented networking,” 5th International Workshop on the Network of the
Future with IEEE ICC (FutureNet V), Ottawa, Canada, June 2012.

[13] T. M. Cover, J. A. Thomas, “Elements of information theory,” Wiley-
Interscience, 1991.

[14] R. Albert, A.-L. Barabási, “Statistical mechanics of complex networks,”
Rev. Mod. Phys., vol. 74, no. 1, pp. 47-97, January, 2002.

[15] A. Fronczak, P. Fronczak, J. A. Hołyst, “Average path length in random
networks,” Phys. Rev. E, vol. 70, no. 5, pp. 056110, November, 2004.

